
PMM U.S.S.R.,V01.45,pp.208-212 

Copyright Pergamon Press Ltd.1982.Printed in U.K. 
0021-892818212 0208 $7.50/o 

UDC 536.25+532.135+532.546 

ON CONVECTIVE MOTIONS OF VISCOPLASTIC FLUID IN A POROUS MEDIUM* 

T.P. LIUBIMOVA and D.V. LIUBIMOV 

The two-dimensional free convection of viscoplastic fluid in a porous medium heated 

from the side is investigated, and the problem of convection inaninfinitevertical 

layer is solved. The variational principle which makes possible the determination 

of the threshold Rayleigh number is formulated in the case of an arbitrary plane 

region. The problemof convection in a rectangular region is solved using the net- 

point method. 

1. Consider the convective motion of a viscoplastic fluid saturating a closed region of 

a porous medium heated from the side. The equations of viscoplastic fluid convection in a 

porous medium in the Boussinesq approximation in dimensionless form are 

Vp-RTI,=F. R=q (1.1) 

cYTlc% + vVT = AT, div v =O 

v=- I-&)F([FI;.\), v=tl(IFI<.\); .i= $_ i 
(1.2) 

The impermeability condition (vn) =O, where n is a normal to the surface bounding that 

region, and specify a temperature distribution corresponding to heating from the side. 
As units of length, time, velocity, pressure, and temperature we select, respectively, 

a, (~&s%%)~xt xla, rlx& rl~llia, 6 (a is a characteristic dimension of the region, @is a 

characteristic temperature difference, q is the dynamic viscosity of the fluid, and k is the 
permeability coefficient). 

Here p is the contribution of convection to pressure, T is the temperature measured 

from some mean value, Pf is the fluid density, fl is the coefficient of thermal expansion of 

the fluid, g is the acceleration of gravity, y is a unit vector directed vertically upward, 

x -x,,,/(pc,)/ is the thermal diffusivity coefficient, x,,, is the coefficient of thermal con- 

ductivity of the medium, and C, is the specific heat. Quantities denoted by subscript f 
pertain to the fluid, those with subscriptm to the porous medium saturated with fluid. 

Equations (1.2) define the relation between the filtration rate v and the averaged force 

F of interaction between the fluid and structure of the medium (the law of filtration with 

limit gradient /l/). 
The problem contains two dimensionless parameters: the Rayleigh number R and the rheo- 

logical parameter A. 

2. The simplest flow arises in a long vertical layer whose boundaries are maintained at 

different temperatures. A similar problem was solved in the case of homogeneous fluid in /2/, 

where it was shown that the motion is of the form of two convection counterflows with a core 

flow zone formed in the central parts of both streams. It will be shown below that in the 

case of a porous medium a single stagnation zone is present in the layer central part. 
Consider an infinite vertical layer whose boundaries z =T'ie are maintainedatconstant 

but different temperatures T= Fr/2. If we assume that the velocity has only a vertical com- 

ponent U" = v and the temperature depends only on 5, we obtain from the heat conduction 

equation T TX. It is possible to show in the usual way (see /3/) that i3p/ay =C =const. 
Then using the Y component of the equation of motion we obtain 

v=Rx-C-An, v>O; v=Rx-C+f, v<O (2.1) 

in which the velocity distribution satisfies the condition of the stream closure only for 

c =o. 
It follows from (2.1) that the stagnation zone boundaries are defined by the formula 

x-&A/R (2.2) 
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For R<2A the stagnation zone occupies the total cross section of the channel and con- 
vection motion is absent. In the region of R>24 the convection intensity increases as R 
increases. The flow rate through half-cross section of the channel is Q =(R -2A)~/(8~). 

Thus convective motion in a vertical layer of porous medium exists only at Rayleigh 
numbers higher than some threshold value 

R, =2A (2.3) 

with motion intensity increasing with R according to a quadratic law near the threshold, and 
to a linear law at distance from it. 

3. Consider the more general case of convective motion of viscoplastic fluid filling an 
arbitrary plane region D bounded by contour re in a porous medium. As in the case of the 
plane vertical layer, the convection motion with heating from the side is only possible at 
Rayleigh numbers exceeding a certain threshold &. We formulate the variational principle 
for the determination of R,. Let the closed contour r lie entirely inside the region. We 
integrate along I? the equation of motion 

Fdl? + R $ yTdI-= 0 
r 

(3.1) 

where it is taken into account that pressure is a single-valued function of coordinates. Since 
IF I< A for R<R,, for the first integral in (3.1) we have 

(3.2) 

where L is the contour length. Using the Stokes theorem we transform the second of integrals 
(3.1) in the integral over area S bounded by contour r, and obtain 

(3.3) 

where the x -coordinate is horizontal.. 
Let us show that the region in which at R>R, 

X+R*. 
there exists some closed contour r. as 

Assume the opposite, i.e. that at R =R* we have throughout the region F = NC, where 
k is a unit vector. We apply to the equation of motion the operation rot and project the 

obtained equation on the z-axis. Then 

A($!$) ;-R=O (3.4) 

We denote by cp the 

whose integration along 

where L is the contour 
For force F to be 

This implies that 
region width is finite, 

angle between vector k and the s-axis , and write Eq.(3.4) in the form 

NaVi+~++=0 (3.5) 

some closed streamline yields 

fh@--dk- RL=o 

length. 
a single-valued function of coordinates it is necessary that 

0 
-$&=ZsTZ (pt=O. 1,2,...) (3.6) 

L =2n:(AIR)n, i.e. we have a discrete set of lengths L. If the flow 
length L varies continuously from one streamline to another and can- 

not be discrete. Consequently, the flow cannot begin at once throughout the region, but is 
generated at R =R, along the thin closed contour. 

Since the velocity vector is directed along the tangent to TO as R+R, , the equality 
in (3.3) is attained only at R= R, with r coinciding with I',,. This yields the following 
variational principle for N, : 

(3.7) 

where iEt is the functional of the form of contour r. The contour rwhich yields the minimum 
functional (I, is the same as contour i',. 



210 T.P. Liubimova and D.V. Liubimov 

Note that the variational principle (3.7) is closely related to the variationalprinciple 
established in /l/. 

At high Rayleigh numbers close to R* it is, indeed, possible to disregardthe temperature 
field distortion due to convection, as well as the term containing the square of velocity. 
Then the variational principle assumes the form /l/ 

c 
(lIIvI-RTyv)ds=min (3.8) 

b 
Since motion is impossible at R <R,, the functional can have only nonnegative values, with 
its zero value at v= 0. This implies that 

R, = rain {\ 1 v 1 ds I \ Tyvds I -'I (3.9) 

Bearing in mind that we have a plane problem we introduce the stream function Q(vI- al)/ ay,z+ = 
--a*/ ax) and represent the integral in the denominator in the form 

s s aT 
Tyvds = x Qds (3.10) 

Assume that the motion begins on the closed contour r. It is convenient to pass in the 
variational principle (3.9) from variation with respect to v to varying the form of contour 
P. Inside that contour $= q= conat, where 4 is the flow rate through the contour cross 

section. Since velocity is directed along the contour, the integral in the numerator can be 
written as 

SlVIds=qL (3.11) 

where L is the contour length. Substituting (3.10) and (3.11) into (3.9), we obtain a vari- 

ational principle that coincides with (3.7). 

Investigations are particulary simple in the case when the heating conditions (in the 
region of R<R,) correspond to a constant temperature gradient. Then dT/ax = const = A, 

anditis possibletoset A = 1 without loss of generality. Then obviously I: --s, and the 
variational principle assumes the simple form 

R,=.\min-$ (3.12) 
r 

Such extension of contour r decreases functional @, hence contour ro at least touches 

the boundary of region D, and individual sections of r,, and Fe may even coincide. We denote 

the sections of contour r0 that wholly lie in region D by ro', and those at the boundary 

of D by To". It can be shown that all rO' have no discontinuities. Since two-sided vari- 

ations are possible in these sections, Euler equations of the form 

(*)‘-I”=” (3.13) 

must be satisfied in these sections. It is assumed that on a given section contour 1‘0' is 

defined by the expression y= y(z). The general solution of Eq.(3.13) is of the form 

(5 + C,)Z -I- (y + ('2)s = l/@ (3.14) 

where cr and c, are constants of integration that may differ in various rot . When consid- 

ering the variation of r in a region adjacent to any junction point of rO' and r,,' it is 

possible to show that such junction must be smooth. 
Thus contour r0 consists of separate sections of the boundary of region D and circular 

arcs of radius r = 1/Q, inscribed in boundary D. 
Let us consider in detail the case of a rectangular region. 

x E I -l/2, l/21,. y E [ 42, 1121 (3.15) 

where the rectangle base is taken as the unit of length and the y-axis is vertical. For a 

fixed r it is possible to effect in this case the indicated separationina unique manner,after 

which functional0 becomes a function of r. Finally r is obtained either by using the self- 

consistency condition Q,, = l/r or the condition of minimum d@,ldr = 0. The same result is 

evidently obtained in both cases for the threshold value of the Rayleigh number 
R, = QmA, 0,,, = l/r = [Z + 1 -I- 1/(1-1)2 + nl]/l (3.16) 

Wehavethe followingvaluesof @, forseveralspecific cases. In a square region (z= 1) @,,, z 3.77 

andwhen Z= 5, @,=2.58.Atthe limit as 2 -mwe have 0,,-- 2 and R,=-2.1,which conformswith formula 

(2.3) obtainedabove fortheverticallayer. 
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4, Let us now pass to the numerical investigation of the finite-amplitude convective 
motion of viscoplastic fluid in a porous medium. We shall consider convective motion in the 
rectangular region (3.15). Conditions of impermeability, and for flow rate and temperature 
distribution at the region boundary appropriate for heating from the side are specified at 
the region boundaries. 

Model (1.2) is not suitable for numerical investigation, since it is then necessary to 
seek separate solutions for stagnation and viscoplastic flow zones, with merging of solutions 
to be carried out at the a prioriunknown zone interfaces. Because of this, we use the 

regularized model 

which, strictly speaking, does not allow for stagnation zones. However, for fairly small reg- 

ularization parameter s formula (4.1) conforms closely to the law of filtration with a limit 
gradient. In applying formula (4.1) stagnation zones can only be considered as indicating 
that the rate of filtration in such zones is low in comparison with the rate in the remaining 
part of the region. As the criterion isolating stagnation zones we can take 

IFI<.I (4.2) 

We write the equations of convection in terms of stream function 9 and temperature T as 

(4.3) 

with boundary conditions 

Problem (4.3), (4.4) was solved by the method of finite differences. Steady solutions 
were obtained using the method of establishment with explicit finite-difference scheme. All 
three-dimensional derivatives appearing in equations were approximated by central differences. 

Computations were carried out for l= t and I = 5 and rheological parameters (A,&): (2.5;0.1), 
(2.5; 0.05). The Rayleigh number was varied in the interval 0 to 200. Basic computations were 
carried out on a uniform net of pitch l/l5 for I=5 and l/20 for l-11. 

Besides the stream function and temperature fields we determined in the course of comput- 
ations the integral characteristics of the flow: extremal value of the stream function g,,, and 
the dimensionless heat flux fV 

(the dimensionless stream was normalized so that N --:1 corresponded to the heat-conducting 
mode). Obtained numerical dependence of the dimensionless heat flux on the Rayleigh number 
are shown in Fig.1 for rheological parameters A =2, 5, with E ~0.1 for the rectangular 1 =5 
and square t ::l regions (curves 1 and 2, respectively). The threshold values of Rayleigh 
numbers H,, and&, obtained using formula (3.16) are indicated on the R-axis for I ~5 and 
I*%, respectively. For comparison, curves of N(R) function for a Newtonian fluid (A -0) 

for I =5 and 1 =.I are shown for comparison in Fig.1 by dash lines 1 and 2, respectively. 
A sharp increase of convection intensity can be seen in the region of R - R, . The weak con- 
vection at R(R, is linked with the use of the regularized model (4.1) instead of that with 
the limit gradient (1.2). At high Rayleigh numbers the motion acquires the character of the 
boundary layer flow, as is also the case of the Newtonian flow (*). A closed boundary layer is 
formed with a core of comparatively low mobility and a vertical temperature gradient. The 
dependence of heat flux on the Rayleigh number becomes exponential. 

*)M.P. Vlasiuk and V.I. Polezhaev, Natural convection and heat transfer in permeable porous 
materials. Preprint, No.17, Inst. Problem Mekhan., Akad..Nauk.SSSR, 1975. 
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The disposition of stagnation zones for 1 =5 and R =10, 20, 50 1s showninFigs.2,a,b and 
c, respectively (stagnation zones are shaded). Computations have shown that at low Rayleigh 
numbers the stagnation zone extends to the whole region. At R -R, a narrow zone of visco- 
plastic flow adjacent along its separate sections to the cavity walls is generated (Fig.2,a). 
The form of contour I'0 calculated by the variational principle (3.12) is shown by the dash 
curve in the same figure. It can be seen that the forms of contour r,, andoftheviscoplastic 
flow zone numerically calculated for R3RR, are reasonably close. They differ in that the 
boundary of the corner stagnation zone calculated numerically are convex relativetothe center, 
which is, apparently, due to the use of the regularized filtration model. 

With increasing Rayleigh number the central stagnation zone gradually diminishes (Figs, 
2,b,c). 
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To elucidate the effect of the form of the boundary of the corner stagnation zone in a 
net cell and of the regularization parameter e on the form of boundary computationswere car- 
ried out for fixed values of the geometric parameter l== 1, Rayleigh number R = 12, and the 
rheological parameter A = 2.5 , with h = l/40, e = 0.025 +- 10-b. Boundaries of the cornerstagnation 
zone are shown in Fig.3 for 8 =0.025, 0.025/2, 0.025/4, 0.025/32 by curves I-4 , respectively. It will 
be seen that whentheregularizationparameteris decreased,i.e.when approaching conditions of 
the filtration law with limit gradient, the boundary of the corner stagnation zone convex rela- 
tive to the region center becomes convex to the stagnation zone, which is in agreement withthe 
results obtained with the use of the variational principle. 

The authors thank G.Z. Gershuni for discussing this paper. 
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